The Indian Journal of Chest Diseases and Allied Sciences

Register      Login

VOLUME 65 , ISSUE 4 ( October-December, 2023 ) > List of Articles


Virus and Asthma

Ramkishore Velmurugan, Salil Bhargava, Manoj Jain, MV Greeshma

Keywords : Asthma, Exacerbation, Therapeutics, Viruses

Citation Information : Velmurugan R, Bhargava S, Jain M, Greeshma M. Virus and Asthma. Indian J Chest Dis Allied Sci 2023; 65 (4):201-209.

DOI: 10.5005/jp-journals-11007-0098

License: CC BY-NC 4.0

Published Online: 26-03-2024

Copyright Statement:  Copyright © 2023; The Author(s).


Asthma is an inflammatory disease of the airways that affects more than 300 million people around the world. In both children and adults, viral respiratory infections are the most common cause of asthma exacerbations. In bronchial asthma, respiratory viral infection involves several issues: (1) Respiratory virus infection in infancy is associated with asthma later in life; (2) Respiratory virus infection is associated with acute exacerbations of bronchial asthma; and, (3) Glucocorticosteroids (GC) are ineffective for controlling asthma-related symptoms. The purpose of this review is to provide a comprehensive overview of the role of viruses in asthma exacerbations, as well as the main inflammatory cells, mediators, and molecular pathways involved in asthma immune responses. Additionally, it highlights novel therapeutic targets for managing virus-induced asthma based on current clinical and epidemiological research.

PDF Share
  1. 2022 Gina Main Report - Global Initiative for Asthma [Internet]. GINA. 2022 [cited 2022 Dec 14]. Available from:
  2. Moser S, Peroni DG, Comberiati P, et al. Asthma and viruses: Is there a relationship?. Front Biosci (Elite Ed) 2014;6(1):46–54. DOI: 10.2741/e689.
  3. Grippi MA, Barnes peter j, Usmani omar S. Asthma: Clinical presentation and management. In: Fishman's pulmonary diseases and disorders. fifth. New York, US: McGraw-Hill Education; 2015. p. 701.
  4. Loscalzo J, Kasper DL, Longo DL, et al. 287. In: Harrison's principles of Internal Medicine. 22nd ed. New York, US: McGraw Hill; 2022. p. 2148.
  5. To T, Stanojevic S, Moores G, et al. Global asthma prevalence in adults: Findings from the cross-sectional world health survey. BMC Public Health 2012;12:204. DOI: 10.1186/1471-2458-12-204.
  6. Dharmage SC, Perret JL, Custovic A. Epidemiology of asthma in children and adults. Front Pediatr 2019;7:246. DOI: 10.3389/fped.2019.00246.
  7. Kurai D, Saraya T, Ishii H, et al. Virus-induced exacerbations in asthma and COPD. Front Microbiol 2013;4:293. DOI: 10.3389/fmicb.2013.00293.
  8. Merckx J, Ducharme FM, Martineau C, et al. Respiratory viruses and treatment failure in children with asthma exacerbation. Pediatrics 2018;142(1):e20174105. DOI: 10.1542/peds.2017-4105.
  9. Saraya T, Kimura H, Kurai D, et al. The molecular epidemiology of respiratory viruses associated with asthma attacks: A single-center observational study in Japan. Medicine 2017;96(42):e8204. DOI: 10.1097/MD.0000000000008204.
  10. Seo KH, Bae DJ, Kim JN, et al. Prevalence of respiratory viral infections in Korean adult asthmatics with acute exacerbations: Comparison with those with stable state. Allergy Asthma Immunol Res 2017;9(6):491–498. DOI: 10.4168/aair.2017.9.6.491.
  11. Costa LD, Camargos PA, Brand PL, et al. Asthma exacerbations in a subtropical area and the role of respiratory viruses: A cross-sectional study. BMC Pulm Med 2018;18(1):109. DOI: 10.1186/s12890-018-0669-6.
  12. Alsuwaidi AR, Alkalbani AM, Alblooshi A, et al. Nasopharyngeal isolates and their clinical impact on young children with asthma: A pilot study. Journal of Asthma and Allergy 2018;11:233–243.
  13. Amin NM, El Basha NR, El Rifai NM, et al. Viral causes of acute respiratory infection among Egyptian children hospitalized with severe acute asthma exacerbation. J Egypt Public Health Assoc 2013;88(1):52–56. DOI: 10.1097/
  14. Glezen WP, Greenberg SB, Atmar RL, et al. Impact of respiratory virus infections on persons with chronic underlying conditions. JAMA 2000;283(4):499–505. DOI: 10.1001/jama.283.4.499.
  15. Weinberg GA, Erdman DD, Edwards KM, et al. Superiority of reverse-transcription polymerase chain reaction to conventional viral culture in the diagnosis of acute respiratory tract infections in children. J Infect Dis 2004;189(4):706–710. DOI: 10.1086/381456.
  16. Oh JW. Respiratory viral infections and early asthma in childhood. Allergol Int 2006;55(4):369–372. DOI: 10.2332/allergolint.55.369.
  17. Carroll KN, Hartert TV. The impact of respiratory viral infection on wheezing illnesses and asthma exacerbations. Immunol Allergy Clin North Am 2008;28(3):539–561. DOI: 10.1016/j.iac.2008.03.001.
  18. Busse WW, Lemanske RF, Gern JE. Role of viral respiratory infections in asthma and asthma exacerbations. Lancet 2010;376(9743):826–834. DOI: 10.1016/S0140-6736(10)61380-3.
  19. Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 2020;181(5):1016–1035.e19. DOI: 10.1016/j.cell.2020.04.035.
  20. Kimura H, Francisco D, Conway M, et al. Type 2 inflammation modulates ACE2 and TMPRSS2 in airway epithelial cells. J Allergy Clin Immunol 2020;146(1):80–88.e8. DOI: 10.1016/j.jaci.2020.05.004.
  21. Sajuthi SP, DeFord P, Li Y, et al. Type 2 and interferon inflammation regulate SARS-CoV-2 entry factor expression in the airway epithelium. Nat Commun 2020;11(1):5139. DOI: 10.1038/s41467-020-18781-2.
  22. Veerapandian R, Snyder JD, Samarasinghe AE. Influenza in asthmatics: For better or for worse? Front Immunol 2018;9:1843. DOI: 10.3389/fimmu.2018.01843.
  23. Chen YQ, Wohlbold TJ, Zheng NY, et al. Influenza infection in humans induces broadly cross-reactive and protective neuraminidase-reactive antibodies. Cell 2018;173(2):417–429.e10. DOI: 10.1016/j.cell.2018.03.030.
  24. Gubareva LV, Mishin VP, Patel MC, et al. Assessing baloxavir susceptibility of influenza viruses circulating in the United States during the 2016/17 and 2017/18 seasons. Euro Surveill 2019;24(3):1800666. DOI: 10.2807/1560-7917.ES.2019.24.3.1800666.
  25. Jackson DJ, Gangnon RE, Evans MD, et al. Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children. Am J Respir Crit Care Med 2008;178(7):667–672. DOI: 10.1164/rccm.200802-309OC.
  26. Jartti T, Jartti L, Peltola V, et al. Identification of respiratory viruses in asymptomatic subjects: Asymptomatic respiratory viral infections. Pediatr Infect Dis J 2008;27(12):1103–1107. DOI: 10.1097/INF.0b013e31817e695d.
  27. Stone CA, Miller EK. Understanding the association of human rhinovirus with asthma. Clin Vaccine Immunol 2016;23(1):6–10. DOI: 10.1128/CVI.00414-15.
  28. Corrigendum: Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation. Nat Med 2017;23(11):1384. DOI: 10.1038/nm1117-1384a.
  29. Toussaint M, Jackson DJ, Swieboda D, et al. Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation. Nat Med 2017;23(6):681–691. DOI: 10.1038/nm.4332.
  30. Mthembu N, Ikwegbue P, Brombacher F, et al. Respiratory viral and bacterial factors that influence early childhood asthma. Front Allergy 2021;2:692841. DOI: 10.3389/falgy.2021.692841.
  31. Akbarshahi H, Menzel M, Ramu S, et al. House dust mite impairs antiviral response in asthma exacerbation models through its effects on TLR3. Allergy 2018;73(5):1053–1063. DOI: 10.1111/all.13378.
  32. Cheung D, Dick EC, Timmers MC, et al. Rhinovirus inhalation causes long-lasting excessive airway narrowing in response to methacholine in asthmatic subjects in vivo. Am J Respir Crit Care Med 1995;152(5 Pt 1):1490–1496. DOI: 10.1164/ajrccm.152.5.7582282.
  33. Nakagome K, Nagata M. Involvement and possible role of eosinophils in asthma exacerbation. Front Immunol 2018;9:2220. DOI: 10.3389/fimmu.2018.02220.
  34. Hayashi Y, Sada M, Shirai T, et al. Rhinovirus infection and virus-induced asthma. Viruses 2022;14(12):2616. DOI: 10.3390/v14122616.
  35. Gern JE, Busse WW. Relationship of viral infections to wheezing illnesses and asthma. Nat Rev Immunol 2002;2(2):132–138. DOI: 10.1038/nri725.
  36. Jartti T, Bønnelykke K, Elenius V, et al. Role of viruses in asthma. Semin Immunopathol 2020;42(1):61–74. DOI: 10.1007/s00281-020-00781-5.
  37. Allakhverdi Z, Comeau MR, Jessup HK, et al. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J Exp Med 2007;204(2):253–258. DOI: 10.1084/jem.20062211.
  38. Kato A, Favoreto S Jr, Avila PC, et al. TLR3- and Th2 cytokine-dependent production of thymic stromal lymphopoietin in human airway epithelial cells. J Immunol 2007;179(2):1080–1087. DOI: 10.4049/jimmunol.179.2.1080.
  39. Jackson DJ, Makrinioti H, Rana BM, et al. IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo. Am J Respir Crit 2014;190(12):1373–1382. DOI: 10.1164/rccm.201406-1039OC.
  40. Beale J, Jayaraman A, Jackson DJ, et al. Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation. Sci Transl Med 2014;6(256):256ra134. DOI: 10.1126/scitranslmed.3009124.
  41. Fahy JV. Type 2 inflammation in asthma—present in most, absent in many. Nat Rev Immunol 2015;15(1):57–65. DOI: 10.1038/nri3786.
  42. Jarjour NN, Gern JE, Kelly EA, et al. The effect of an experimental rhinovirus 16 infection on bronchial lavage neutrophils. J Allergy Clin Immunol 2000;105(6):1169–1177. DOI: 10.1067/mai.2000.106376.
  43. Nicholson KG, Kent J, Hammersley V, et al. Risk factors for lower respiratory complications of rhinovirus infections in elderly people living in the community: Prospective cohort study. BMJ 1996;313(7065):1119–1123. DOI: 10.1136/bmj.313.7065.1119.
  44. Henderson FW, Clyde WA Jr, et al. The etiologic and epidemiologic spectrum of bronchiolitis in pediatric practice. J Pediatr 1979;95(2): 183–190. DOI: 10.1016/s0022-3476(79)80647-2.
  45. Jartti T, Söderlund-Venermo M, Hedman K, et al. New molecular virus detection methods and their clinical value in lower respiratory tract infections in children. Paediatr Respir Rev 2013;14(1):38–45. DOI: 10.1016/j.prrv.2012.04.002.
  46. Stein MM, Thompson EE, Schoettler N, et al. A decade of research on the 17q12-21 asthma locus: Piecing together the puzzle. J Allergy Clin Immunol 2018;142(3):749–764. DOI: 10.1016/j.jaci.2017.12.974.
  47. Çalışkan M, Bochkov YA, Kreiner-Møller E, et al. Rhinovirus wheezing illness and genetic risk of childhood-onset asthma. N Engl J Med 2013;368(15):1398–1407. DOI: 10.1056/NEJMoa1211592.
  48. Kim MA, Kim DK, Yang HJ, et al. Pollen-food allergy syndrome in Korean pollinosis patients: A nationwide survey. Allergy Asthma Immunol Res 2018;10(6):648–661. DOI: 10.4168/aair.2018.10. 6.648.
  49. Friedlander SL, Busse WW. The role of rhinovirus in asthma exacerbations. J Allergy Clin Immunol 2005;116(2):267–273. DOI: 10.1016/j.jaci.2005.06.003.
  50. Wark PA, Johnston SL, Bucchieri F, et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J Exp Med 2005;201(6):937–947. DOI: 10.1084/jem.20041901.
  51. Loscalzo J, Fauci AS, Kasper DL, et al. & israel, elliot. (2022). 287 Asthma. In Harrison's principles of Internal Medicine (21st ed., Vol. 1, pp. 2154–2155). essay, McGraw-Hill.
  52. Verduyn M, Botto G, Jaubert J, et al. Serum IgG concentrations in adult patients experiencing virus-induced severe asthma exacerbations. J Allergy Clin Immunol Pract 2019;7(5):1507–1513.e1. DOI: 10.1016/j.jaip.2018.12.028.
  53. Leitao Filho FS, Won Ra S, Mattman A, et al. Serum IgG and risk of exacerbations and hospitalizations in chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology 2017;140(4):1164–1167. DOI: 10.1016/j.jaci.2017.01.046.
  54. Malka J, Covar R, Faino A, et al. The effect of viral infection on exhaled nitric oxide in children with acute asthma exacerbations. J Allergy Clin Immunol Pract 2015;3(6):913–919. DOI: 10.1016/j.jaip.2015.05.029.
  55. Walker CM, Chung JH. (2019). Asthma. In Müller's imaging of the chest (2nd, pp. 735–735). essay, Elsevier.
  56. Jackson DJ, Gern JE, Lemanske RF. The contributions of allergic sensitization and respiratory pathogens to asthma inception. J Allergy Clin Immunol 2016;137(3):659–665. DOI: 10.1016/j.jaci.2016.01.002.
  57. Weiss KB, Gern JE, Johnston NW, et al. The back to school asthma study: The effect of montelukast on asthma burden when initiated prophylactically at the start of the school year. Ann Allergy Asthma Immunol 2010;105(2):174–181. DOI: 10.1016/j.anai.2010.04.018.
  58. Kanchanateeraphong S, Phongsamart G, Dangsuwan T, et al. Study of montelukast for the treatment of acute and post viral-induced wheezing. J Allergy Clin Immunol 2014;133(2):SupplAB190. DOI: 10.1016/j.jaci.2013.12.681.
  59. Rodrigo GJ, Castro-Rodríguez JA. What is the role of tiotropium in asthma?: A systematic review with meta-analysis. Chest 2015;147(2):388–396. DOI: 10.1378/chest.14-1698.
  60. Dhariwal J, Edwards MR, Johnston SL. Anti-viral agents: Potential utility in exacerbations of asthma. Curr Opin Pharmacol 2013;13(3):331–336. DOI: 10.1016/j.coph.2013.04.010.
  61. Cazzola M, Ora J, Rogliani P, et al. Role of muscarinic antagonists in asthma therapy. Expert Rev Respir Med 2017;11(3):239–253. DOI: 10.1080/17476348.2017.1289844.
  62. Gielen V, Johnston SL, Edwards MR. Azithromycin induces anti-viral responses in bronchial epithelial cells. Eur Respir J 2010;36(3): 646–654. DOI: 10.1183/09031936.00095809.
  63. Gibson PG, Yang IA, Upham JW, et al. Effect of azithromycin on asthma exacerbations and quality of life in adults with persistent uncontrolled asthma (AMAZES): A randomised, double-blind, placebo-controlled trial. Lancet 2017;390(10095):659–668. DOI: 10.1016/S0140-6736(17)31281-3.
  64. Johnston SL, Szigeti M, Cross M, et al. Azithromycin for acute exacerbations of asthma: The AZALEA randomized clinical trial. JAMA Intern Med 2016;176(11):1630–1637. DOI: 10.1001/jamainternmed.2016.5664.
  65. Busse WW, Morgan WJ, Gergen PJ, et al. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N Engl J Med 2011;364(11):1005–1015. DOI: 10.1056/NEJMoa1009705.
  66. Pritchard AL, Carroll ML, Burel JG, et al. Innate IFNs and plasmacytoid dendritic cells constrain Th2 cytokine responses to rhinovirus: A regulatory mechanism with relevance to asthma. J Immunol 2012;188(12):5898–5905. DOI: 10.4049/jimmunol.1103507.
  67. Xirakia C, Koltsida O, Stavropoulos A, et al. Toll-like receptor 7–triggered immune response in the lung mediates acute and long-lasting suppression of experimental asthma. American Journal of Respiratory and Critical Care Medicine 2010;181(11):1207–1216. DOI:10.1164/rccm.200908-1255OC.
  68. Bricks LF. Prevention of respiratory syncytial virus infections. Rev Hosp Clin 2001;56(3):79–90. DOI: 10.1590/S0041-87812001000300004.
  69. Wu H, Pfarr DS, Johnson S, et al. Development of motavizumab, an ultra-potent antibody for the prevention of respiratory syncytial virus infection in the upper and lower respiratory tract. J Mol Biol 2007;368(3):652–665. DOI: 10.1016/j.jmb.2007.02.024.
  70. Mochizuki H, Kusuda S, Okada K, et al. Palivizumab prophylaxis in preterm infants and subsequent recurrent wheezing. Six-year follow-up study. Am J Respir Crit Care Med 2017;196(1):29–38. DOI: 10.1164/rccm.201609-1812OC.
  71. Osterholm MT, Kelley NS, Sommer A, et al. Efficacy and effectiveness of influenza vaccines: A systematic review and meta-analysis. Lancet Infect Dis 2012;12(1):36–44. DOI: 10.1016/S1473-3099(11)70295-X.
  72. Vasileiou E, Sheikh A, Butler C, et al. Effectiveness of influenza vaccines in asthma: A systematic review and meta-analysis. Clin Infect Dis 2017;65(8):1388–1395. DOI: 10.1093/cid/cix524.
  73. Mejias A, Rodriguez-Fernandez R, Peeples ME, et al. Respiratory syncytial virus vaccines: Are we making progress?. Pediatr Infect Dis J 2019;38(10):e266–e269. DOI: 10.1097/INF.0000000000002404.
  74. Shi T, Pan J, Katikireddi SV, et al. Risk of COVID-19 hospital admission among children aged 5–17 years with asthma in Scotland: A national incident cohort study. Lancet Respir Med 2022;10(2):191–198. DOI: 10.1016/S2213-2600(21)00491-4.
  75. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 2020;323(20):2052–2059. DOI: 10.1001/jama.2020.6775.
  76. De Boer G, Braunstahl GJ, Hendriks R, et al. Asthma exacerbation prevalence during the COVID-19 lockdown in a moderate-severe asthma cohort. BMJ Open Respir Res 2021;8(1):e000758. DOI: 10.1136/bmjresp-2020-000758.
  77. Tydeman F, Pfeffer PE, Vivaldi G, et al. Rebound in asthma exacerbations following relaxation of COVID-19 restrictions: A longitudinal population-based study (COVIDENCE UK). Thorax 2022 Nov 24.
  78. Matsumoto N, Kadowaki T, Takanaga S, et al. Impact of COVID-19 pandemic-associated reduction in respiratory viral infections on childhood asthma onset in Japan. J Allergy Clin Immunol Pract 2022;10(12):3306–3308. DOI: 10.1016/j.jaip.2022.09.024.
  79. Lin CH, Cerrone DA. Shifts in asthma evaluation and management during COVID-19. Curr Treat Options Allergy 2022;9(2):42–51. DOI: 10.1007/s40521-022-00304-7.
  80. Taquechel K, Diwadkar AR, Sayed S, et al. Pediatric asthma health care utilization, viral testing, and air pollution changes during the COVID-19 pandemic. J Allergy Clin Immunol Pract 2020;8(10):3378–3387. DOI: 10.1016/j.jaip.2020.07.057.
  81. Ni W, Yang X, Yang D, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care 2020;24(1):422. DOI: 10.1186/s13054-020-03120-0.
  82. Yang JM, Koh HY, Moon SY, et al. Allergic disorders and susceptibility to and severity of COVID-19: A nationwide cohort study. J Allergy Clin Immunol 2020;146(4):790–798. DOI: 10.1016/j.jaci.2020.08.008.
  83. Carli G, Cecchi L, Stebbing J, et al. Is asthma protective against COVID-19. Allergy 2021;76(3):866–868. DOI: 10.1111/all.14426.
  84. Sunjaya AP, Allida SM, Di Tanna GL, et al. Asthma and COVID-19 risk: A systematic review and meta-analysis. Eur Respir J 2022;59(3):2101209. DOI: 10.1183/13993003.01209-2021.
  85. Ren J, Pang W, Luo Y, et al. Impact of allergic rhinitis and asthma on COVID-19 infection, hospitalization, and mortality. J Allergy Clin Immunol Pract 2022;10(1):124–133. DOI: 10.1016/j.jaip.2021.10.049.
  86. Jackson DJ, Busse WW, Bacharier LB, et al. Association of respiratory allergy, asthma, and expression of the SARS-CoV-2 receptor ACE2. J Allergy Clin Immunol 2020;146(1):203–206.e3. DOI: 10.1016/j.jaci.2020.04.009.
  87. Peters MC, Sajuthi S, Deford P, et al. COVID-19–related genes in sputum cells in asthma. Relationship to demographic features and corticosteroids. Am J Respir Crit Care Med 2020;202(1):83–90. DOI: 10.1164/rccm.202003-0821OC.
  88. Shi T, Pan J, Vasileiou E, et al. Risk of serious COVID-19 outcomes among adults with asthma in Scotland: A national incident cohort study. Lancet Respir Med 2022;10(4):347–354. DOI: 10.1016/S2213-2600(21)00543-9.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.